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Hierarchy Flow For High-Fidelity
Image-to-Image Translation
Weichen Fan†, Jinghuan Chen†, Ziwei Liu, Member, IEEE,

Abstract—Image-to-image (I2I) translation comprises a wide spectrum of tasks. Here we divide this problem into three levels:
strong-fidelity translation, normal-fidelity translation, and weak-fidelity translation, indicating the extent to which the content of the
original image is preserved. Although existing methods achieve good performance in weak-fidelity translation, they fail to fully preserve
the content in both strong- and normal-fidelity tasks, e.g. sim2real, style transfer and low-level vision. In this work, we propose
Hierarchy Flow, a novel flow-based model to achieve better content preservation during translation. Specifically, 1) we first unveil the
drawbacks of standard flow-based models when applied to I2I translation. 2) Next, we propose a new design, namely hierarchical
coupling for reversible feature transformation and multi-scale modeling, to constitute Hierarchy Flow. 3) Finally, we present a dedicated
aligned-style loss for a better trade-off between content preservation and stylization during translation. Extensive experiments on a
wide range of I2I translation benchmarks demonstrate that our approach achieves state-of-the-art performance, with convincing
advantages in both strong- and normal-fidelity tasks. Code and models will be at https://github.com/WeichenFan/HierarchyFlow.

Index Terms—Image-to-image translation, generative model, normalizing flow, low-level vision.

✦

1 INTRODUCTION

IMAGE-TO-IMAGE translation [9] is a long-standing topic
in computer vision, which is required to learn a mapping

between two different visual domains while preserving the
semantic information (content) of the source domain and
obtaining the domain properties (style) of the target domain.
Many applications, such as neural style transfer [10]–[13],
super-resolution [14], [15], image enhancement [16] and
photo-realistic synthesis [17]–[19], can be formulated as I2I
translation problems. Among most tasks, fully preserving
semantic information during translation is important yet
challenging, especially in scenarios where the content gap
between source and target domains is large. According to
the requirement of content preservation during translation,
we further divide these tasks into three levels: strong-
fidelity translation, normal-fidelity translation, and weak-
fidelity translation (see Figure 2). In this work, we are
interested in strong- and normal-fidelity settings, where
content preservation plays a crucial role during translation.

Existing I2I translation methods can be broadly catego-
rized into two approaches. Some methods learn a bijective
mapping between source and target images, by forcing the
translated images to be reconstructed back to the source
images during training using a cyclic loss (e.g. [1]). Others
try to fully disentangle content and style information from
an image and achieve image translation by switching style
information between source and target images (e.g. [20]).
However, both approaches suffer from different levels of
content distortion in translated images, since cyclic loss
and feature disentanglement usually failed when rich and
complex semantic information is required to be preserved,
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especially in strong- and normal-fidelity translation tasks.
Relatively few methods focus on addressing this prob-
lem directly, and most among them suffer from carefully-
designed tricks and are unable to generalize well to a wide
range of tasks, since they either require auxiliary inputs
such as paired images or additional information guidance,
etc. (e.g. [19]), or utilize complex contrastive training or
pre-trained tasks aiming for better feature disentanglement
learning (e.g. [21], [22]).

Content preservation remains a challenging problem in
I2I translation. We consider flow-based models, also called
normalizing flow, a subclass of deep generative networks
that learns the exact likelihood of data distribution through
a chain of basic blocks with fully-reversible transforma-
tions, which can be a perfect fit in the requirement of
content preservation in image generation. ArtFlow [23] is
the first work to use the flow-based model in I2I transla-
tion, specifically in style transfer task only. It proves the
superiority of flow-based models in addressing the “content
leakage” problem through lossless and unbiased feature
extraction and image reconstruction. However, although
ArtFlow achieves better content preservation compared to
other methods, it suffers from severe checkerboard artifacts
problem in the translated images (see Figure 4). We further
investigate the checkerboard issue and finally identify its
root cause as the squeeze operation that is widely-used
in flow-based models for multi-scale architecture [24], [25].
Sec.3.1 shows more analyses in detail. Therefore, we focus
on designing a new framework that can utilize the supe-
riority of flow-based models in content preservation for
I2I translation, and also avoid the checkerboard artifacts
problem as in ArtFlow.

In this work, we propose Hierarchy Flow, which is a new
flow-based model dedicated to unpaired I2I translation with
good content-preserving ability. To avoid the problematic
squeeze operation in multi-scale architecture for flow-based
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Fig. 1. Given two images in different visual domains, our model learns to translate from one to the other with high fidelity in various tasks. (From
top-left to bottom-right: 1. Summer to Winter [1]; 2. Dark to Bright [2]; 3. Photo to Van Gogh [3]; 4. Hazy to Clear [4], [5]; 5. GTA [6] to Cityscapes
[7]; 6. Non-makeup to makeup [8].

models, we present a novel basic block design, named Hi-
erarchical Coupling Layer, for efficient feature transformation
and multi-scale modelling. In our model, feature extraction
is done in a hierarchical way which can gradually remove
style-specific features by a series of subtractive coupling
operations in the forward pass. After feature extraction, we
use Adaptive Instance Normalization [12] to perform trans-
formation upon deep features by replacing the statistical
information (mean/std vector of features) of source features
with those of target features. Finally, translated images are
generated through the reversed pass of the network. Follow-
ing most I2I translation tasks especially in style transfer [12],
content loss and style loss calculated based on a pre-trained
VGG encoder [26] are adopted. We further extend the idea
of style loss and introduce its simple extension named
aligned-style loss, which takes the trade-off between content
preservation and stylization into consideration, to further
improve translation results, especially in scenarios where
content gap is large between source and target domains,
e.g. GTA [6] to Cityscapes [7] translation.

We apply the proposed framework to a wide range of
applications, and plausible results (see Figure 1) indicate the
significance and effectiveness of the design in our method.
To the best of our knowledge, we are the first I2I trans-
lation work that evaluates on both high-level (e.g. GTA
to Cityscapes) and low-level (e.g. Low-light enhancement)
vision tasks and achieves superior results in both areas. We
summarize the contributions of this work as below: 1) We
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Fig. 2. Illustration of three levels of image-to-image translation tasks:
strong-, normal- and weak-fidelity translation, where the requirement of
content preservation decreases gradually.

divide image-to-image translation tasks into three subsets:
strong-, normal- and weak-fidelity translation, according
to the requirement of content preservation. 2) We unveil
the main drawback of flow-based models in I2I transla-
tion tasks, and propose Hierarchy Flow, a novel design
for unpaired high-fidelity image-to-image translation. 3)
We design a novel aligned-style loss for efficient content-
preserving feature transformation. 4) We demonstrate that
Hierarchy Flow outperforms previous methods with high
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Fig. 3. (A). The basic components of GLOW [25] consist of a squeeze
operation followed by a series of invertible layers for non-linear transfor-
mation. (B). The squeeze operation [24] reorganizes the features map
following a spatial checkerboard pattern.

fidelity and vivid stylization in extensive experiments.

2 RELATED WORK

2.1 Image-to-Image Translation

Generic Image-to-Image Translation: The previous generic
I2I models [20], [27], [28] suffer from the problem of content
distortion, even though a lot of regularization methods have
been proposed to reduce the impact, including cyclic con-
sistency, contrastive learning, etc. For weak-fidelity trans-
lations, where the content can be heavily modified, these
methods are appropriate, while for strong- and normal-
fidelity translations, they do not perform well. Our pro-
posed model can be applied to both normal- and strong-
fidelity translations without the problem of content distor-
tion.

Strong-fidelity Translation: Strong-fidelity I2I translation
means the content of the source image should be preserved
to a great extent. Sim2real translation [19], [22], colorization
[29], and low-level visions such as low light enhancement
[2], [16], raindrop removal [30], [31] and dehazing [31]–
[33] belong to the strong-fidelity setting. These problems
require the translated images to retain the exact rich and
complex semantic information in source images. To achieve
high content preservation, previous methods require paired
training images or auxiliary inputs such as semantic seg-
mentation masks. Most recently, VSAIT [34] proposes a
new framework based on vector symbolic architectures to
directly solve “semantic flipping” problem and achieve cur-
rent SOTA results in unpaired I2I translation.

Normal-fidelity Translation: Normal-fidelity I2I translation
includes style transfer [10], [12], [13], [23], [35], [36], season
and weather transfer [37], etc. In this setting, the source and
target domains usually show different visual effects, such
as weather conditions and artistic styles, but share similar
structural information, the primary objective is to transfer
the overall visual effects of source domains to match those
in target domains. Previous work have shown plausible
overall visual results in these tasks, while a certain level
of content distortion can be found when we zoom in to the

ArtFlow Ours

Fig. 4. The checkerboard artifacts. Left: output sample from ArtFlow
[23]; Right: our result. Compared to the output of ArtFlow which suffers
from checkerboard artifacts (shown in zoomed-in boxes), we generate
smooth images with high fidelity.

details of translated images.

Weak-fidelity Translation: Weak-fidelity I2I translation
refers to problems where the source and target images
may lie in completely different domains or modals, the
translation is to be performed on a high semantic level,
which means the content information of source images can
be modified a lot. Label to image [38] and object to object
translation [1], [28], [39], [40] belong to this type of problem.

2.2 Normalizing Flow
Normalizing flow is a type of generative model that uses
a sequence of invertible mappings to transform from dis-
tribution to distribution, and it is accurate and efficient
in both density estimation and sampling [41]. Dinh et al.
[42] first propose a flow-based generative model, NICE.
After that, GLOW [25], RealNVP [24], and FLOW++ [43]
are proposed to improve the sample efficiency and density
estimation performance. More recently, BeautyGLOW [44] is
proposed for makeup transfer. Besides, ArtFlow [23] proves
that the normalizing flow is unbiased in neural style transfer
compared with the previous work.

3 OUR APPROACH

In this section, we first give a brief introduction of flow-
based generative models and unveil its main drawback
in I2I translation, which is the checkerboard artifacts, in
Sec.3.1; next, we introduce the design of our proposed Hi-
erarchy Flow in details in Sec.3.2, which solves the checker-
board issues of previous methods and achieve better content
preservation in high-fidelity image translation.

3.1 Preliminary
3.1.1 Flow-based Generative Model
Flow-based model is a subset of generative models that
learns the exact log-likelihood of a high dimensional data
distribution through a sequence of fully reversible trans-
formations. Let x be a high-dimensional variable with un-
known distribution x ∼ p(x), a generative model pθ(x) with
parameters θ is designed to estimate distribution p(x) given
dataset D, with training objective min L(D), where

L(D) = 1

N

N∑
i=1

−log(pθ(x(i))) (1)
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Fig. 5. The framework of our proposed Hierarchy Flow. Given a source image and a target image, the source image is encoded by Hierarchy Flow
in the forward pass represented by the red arrows, then fused with style information extracted from the target image by Style-Net in the form of
AdaIN [12], and finally reverse-decoded by Hierarchy Flow and denoted in blue arrows to generate translated image.

Most flow-based generative models [24], [25], [42] formulate
the generative process as

x
f1←→ h1

f2←→ h2 · · ·
fk←→ z (2)

where z is latent variable, fθ = f1 ◦ f2 ◦ · · · ◦ fk is a
sequence of invertible functions such that z and x satisfy
the relationship z = fθ(x) and x = f−1

θ (z). One of the most
frequently-used flow-based networks for image synthesis
is GLOW [25]. As shown in Figure 3, it combines a series
of steps of flow in a multi-scale architecture with squeeze
operations [24] between each scale to effectively transform
feature scale by trading spatial size for channel size. In
each step of flow, features are transformed by actnorm
activation followed by an invertible 1x1 convolution and
lastly an affine coupling layer. Previous work ArtFlow [23]
follows the network design of GLOW to achieve reversible
transformations in universal style transfer, and solve the
content leakage problem by lossless and unbiased image
projection and reversion.

3.1.2 Checkerboard Artifacts Problem
The squeeze operation plays a vital role in GLOW for
multi-scale feature transformation. As shown in Figure 3(B),
it follows a spatial checkerboard pattern to transform a
H ×W × C tensor (left) into H

2 ×
W
2 × 4C tensor (right),

to efficiently implement multi-scale architecture by trading
spatial size for channel size. During reversed pass of the
model, one can easily “undo” the squeeze operation by
restoring the spatial dimension of the tensors.

In ArtFlow, the style feature transfer module (AdaIN [12]
or WCT [13]) is applied to the encoded features before the
reversed pass to generate translated images. As a result,
significant changes have been made to each individual
channel of the features, and spatial misalignment will be
produced when unsqueeze operations are performed on the

transferred features during the reversed pass, leading to the
obvious checkerboard artifacts in the output samples (see
Figure 4: Left).

In order to utilize the usage of invertible network design
of flow-based models and to solve checkerboard artifacts
problem in ArtFlow, we aim to re-design the squeeze opera-
tion for multi-scale architecture to achieve content-fixed and
artifacts-free image-to-image translation.

3.2 Hierarchy Flow
As shown in Figure 5, we propose Hierarchy Flow, which
is a flow-based model with a novel design of basic block
named Hierarchical Coupling Layer. In general, given a set
of images (Is, It), a series of hierarchical coupling layers
encode the source image Is to obtain the source features
in the forward network inference. The target image It
is fed into a Style-Net to obtain the style features. After
that, we use AdaIN [12] to perform style feature transfer
to fuse the source features and style features, and finally
perform image reconstruction through the reversed pass of
the network to generate a translated image. In our model,
the network architecture is carefully designed to be fully
reversible. Therefore, combined with AdaIN, we can achieve
I2I translation with desired content preservation.

3.2.1 Hierarchical Coupling Layer
By combining squeeze operation with affine coupling layer
together, hierarchical coupling layer enables complex feature
transformation and multi-scale modeling inside one single
block without spatial squeezing. Instead, we use hierarchi-
cal subtraction along the channel dimensions to implement
spatial feature fusion and transformation in a learnable
manner. Algorithms 1 and 2 show the details of the forward
and reversed pass respectively.

A. Forward Pass. Given an input tensor x with dimension
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Algorithm 1 Forward Pass.

FORWARD(x)
a = Affine-Net(x)
a1, a2, · · · , an = split(a)
h1 = x− a1
hi = hi−1 − ai for i← 2, n
y = concat(h1, h2, · · · , hn)
return y

Algorithm 2 Reversed Pass.

REVERSED(y, a1···n, style feature µ, σ)
y = AdaIN(y, µ, σ)
y1, y2, · · · , yn = split(y)
hn = yn + an
hi = α · (yi + ai) + (1− α) · hi+1 for i← n− 1, 1
x = h1

return x

[H×W×C], we first apply an affine transformation with an
Affine-Net which can be any neural network, where the input
tensor undergoes a channel-wise expansion and is mapped
to an affined tensor with dimension [H × W × nC] with
expansion rate n. With the affine tensor separated into n
splits along channel dimension, we then apply a hierarchical
subtractive coupling for x in n-steps, and obtain output y by
concatenating the n intermediate feature maps.
B. Reversed Pass. To compute the inverse of the above
transformation, we can simply apply n steps of addictive
coupling between input tensor y and affine tensor a, and
fuse the n intermediate feature maps to obtain output tensor
x. To better facilitate the fusion process in the training, we
apply a learnable fusion weight α in each step of fusion,
which measures the importance of each split of features
during spatial fusion and transformation adaptively.

With the design of hierarchical coupling, we enable
multi-scale feature transformation and fusion inside each
basic block. Therefore, we can easily stack multiple blocks
directly to implement more complex network modeling,
without spatial squeezing as in previous flow-based meth-
ods, since adaptive spatial fusion has been applied inside
each block. Despite of its simplicity in network design, Hier-
archy Flow shows great improvement in high-fidelity trans-
lation tasks with better content preservation and artifacts-
free image generation, which indicates the effectiveness and
significance of our proposed method.

3.2.2 Style-Net and AdaIN
Our Style-Net follows the design of Style-Encoder in MUNIT
[39], which consists of a series of convolutional layers with
stride 2 followed by a global average pooling and two
linear layers that output a mean vector µ and a variance
vector σ. The purpose of the style network is to extract style
information, thus we do not use any normalization layers in
the network, which would modify the style information.

AdaIN is first proposed in [12], it separates deep features
into normalized feature map and mean/std vectors, which
can be referred as content and style information respectively.
To perform style feature transfer, it first scales normalized

source feature x by variance vector σ, then shift it with mean
vector of µ, where σ and µ are the outputs of Style-Net:

AdaIN(x, µ, σ) = σ(
x− µ(x)

σ(x)
) + µ (3)

In our model, AdaIN is applied to every hierarchical cou-
pling layer before the reversed pass.

3.2.3 Loss Function

Our objective function can be expressed as:

L = Lc + λLas (4)

where Lc is the content loss, Las is our proposed aligned-
style loss, and λ is a weighting factor used to trade-off
between content and style.
Content Loss: Following [12], the content loss is defined as
the Euclidean distance between the channel-wise normal-
ization of VGG features for the generated image x̂ and the
source image x.

Lc = ∥norm(ϕ(x̂))− norm(ϕ(x))∥2 (5)

where ϕ refers to the layer relu 4 1 of a pre-trained VGG-19
encoder, norm denotes the channel-wise normalization.
Aligned-Style Loss: Considering that the semantic informa-
tion extracted from VGG-19 of the source image and the tar-
get image are not exactly matched in unpaired translation,
we extend the style loss in [12] to be aligned-style loss by
setting a parameter k to adjust the percentage of extracted
tensors that are used for loss computation. We define S
as an ascending sort function. Given a source image x, a
target image y, and the transferred image x̂, with an energy
function E(ϕi(x̂), ϕi(y)) = ∥µ(ϕi(x̂))− µ(ϕi(y))∥2, where
ϕi (i ∈ L = {1, 2, 3}) represents a set of pre-trained VGG-
19 layers {relu1 1, relu2 1, relu3 1}, we could have the
chosen index:

C = {c ∈ NS |c ⩽ kN, 0 < k ⩽ 1} (6)

where NS is the set of indexes of the sorted tensor
S(E(ϕi(x̂), ϕi(y))), N denotes its total length, and k is the
weighting parameter. Therefore,

Las =
L∑

i=1

∑
j∈C

∥µ(ϕi(x̂)j)− µ(ϕi(y)j)∥2 + (7)

L∑
i=1

∑
j∈C

∥σ(ϕi(x̂)j)− σ(ϕi(y)j)∥2

where ϕi(x)j denotes the jth channel of the output tensor
of the ith layer from the set {relu1 1, relu2 1, relu3 1} of a
pre-trained VGG-19 encoder.

4 EXPERIMENTS

To demonstrate the effectiveness of our method in normal-
and strong-fidelity translation tasks, we show comparisons
between our proposed Hierarchy Flow and other state-of-
the-art methods of respective fields in this section. More
results can be found in supplementary materials.
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Fig. 6. Visual results of GTA to Cityscapes compared with the state-of-the-art methods. CycleGAN [1], GcGAN [45] and CUT [40] hallucinate logos
(blue box), while DRIT++ [46] and EPE [19] generate extra grass on the ground (orange box). Compared to VSAIT [34], our model generates better
Cityscapes-style images.

TABLE 1
Quantitative evaluation on GTA to Cityscapes. Metrics include average pixel prediction accuracy (pxAcc), average class prediction accuracy

(clsAcc), mean IoU (mIoU), and SSIM and FID. We achieve best results with smallest model size.

Method pxAcc↑ clsAcc↑ mIoU↑ SSIM↑ FID↓ Params↓ FLOPs↓

CycleGAN [1] 75.93 39.12 28.92 0.70 22.12 22.76M 454.91G
GcGAN [45] 70.26 38.13 27.34 0.67 12.32 7.84M 84.71G
DRIT++ [46] 75.89 35.44 27.31 0.55 14.69 17.08M 170.18G

CUT [40] 70.81 37.12 26.43 0.61 21.18 11.38M 128.26G
ArtFlow [23] 76.05 45.37 32.15 0.52 8.59 6.42M 90.2G
VSAIT [34] 75.33 42.23 30.33 0.93 7.94 11.38M 128.26G

ours 79.63 45.67 33.76 0.87 7.87 0.68M 10.13G

4.1 Experimental Setup

Network Architecture. As mentioned in Sec 3.2, a stacked
sequence of basic blocks can be used for complex modeling
in different tasks. In the following experiments, we intro-
duce 4 variants of model size with different number of basic
blocks for different tasks, which includes:

1) HF: 2 blocks with expansion rates [10, 4] (Sec. 4.2);
2) HF+: 3 blocks with expansion rates [4, 5, 2] (Sec. 4.3);
3) HF++: 3 blocks with expansion rates [10, 4, 4];
4) HF†: 4 blocks with expansion rates [10, 4, 4, 4]

(Sec. 4.4).
More studies of the network structure can be found in the
ablation study.

Affine-Net Design. Inside each basic block, Affine-Net is
defined as a 3-layer perceptron with Conv-IN-ReLU-Conv-
IN-ReLU-Conv-ReLU in specific, where the first two con-
volutional layers double the input channel dimension and
the last one maps feature to output channel dimension
respectively. All 3 conv layers are designed with 3x3 kernels
and stride 1.

Implementation Details. We implement Hierarchy Flow in
the Pytorch framework, and train for 300k iterations using
an Adam optimizer with a batch size of 1, an initial learning
rate of 1e-5, and a cosine annealing scheduler which contin-
uously decreases the learning rate to 0. The loss weight λ
is set to 0.1, and k in aligned-style loss is set to 0.8 unless
specified. In each experiment, we train the model with 10
random seeds and report the average quantitative results
among them.

4.2 GTA to Cityscapes [Strong-Fidelity]

Dataset: We use GTA dataset [6] as the source domain and
Cityscapes [7] as the target domain. By default, all images
are resized to 512×256 and randomly cropped to 256×256
during training. Evaluation is performed in 512× 256.

Qualitative Evaluation: For the comparison to the previous
work, we select several generic I2I models that focus on
better semantic alignment and a specific photo-realism
model EPE [19] trained with auxiliary inputs. As shown
in Figure 6, except VSAIT [34], all previous I2I models fail
to retain full content information, and different levels of
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TABLE 2
Quantitative results of art-style transfer. ArtFlow with ∗ and †

represents the combination with AdaIN and WCT respectively. SSIM
and KID(×103) are used as metrics. Our model achieved competitive

results on both stylization and content preservation with the lowest
parameter number and FLOPs.

Method SSIM↑ KID↓ Params↓ FLOPs↓

AdaIN [12] 0.28 41.1/5.1 7.01M 117.5G
WCT [13] 0.24 51.2/6.2 34.24M 272.3G

ArtFlow* [23] 0.52 24.6/3.8 6.42M 105.2G
ArtFlow† [23] 0.53 33.3/5.3 6.42M 105.2G

CCPL [36] 0.43 39.1/6.8 8.67M 90.2G
ours 0.60 28.2/4.7 1.01M 24.6G

TABLE 3
Human preference score. “Detail” and “Overall” denote the evaluation
criteria of content preservation and overall performance. Our model
surpass the previous SOTA methods CCPL [36] by 68.1% in “Detail”

and 30.3% in “Overall”.

Method Ours CCPL [36] ArtFlow [23] AdaIN [12] WCT [13]

Detail↑ 76.5% 8.40% 15.1% 0% 0%
Overall↑ 47.9% 17.6% 25.2% 5.9% 3.3%

content distortion exist. More details are shown in the blue
box and orange box in Figure 6).

Quantitative Evaluation: To quantitatively evaluate the
performance of GTA to Cityscapes, it is critical to choose
suitable metrics that can measure the ability of content
preservation during translation. As illustrated in [21], pop-
ular metrics like FID and KID ignore semantic mismatch
during evaluation and thus can be misleading. Instead, in
GTA to Cityscapes translation, we can utilize the semantic
correspondence between images and segmentation labels as
a reference during evaluation. Specifically, for each method,
we use a lightweight DeepLabV3 [47] model to train on
translated GTA images and segmentation masks and report
the semantic segmentation evaluation on the validation
set of Cityscapes, which reflects the performance of both
content preservation and stylization at the same time. Addi-
tionally, we report the Structural Similarity Index Measure
(SSIM) between translated images and source images, which
also measures the performance of content preservation.
Since EPE uses additional “G-buffers” information which
is not publicly available to reproduce their method, the
quantitative result of EPE is omitted. As shown in Table 1,
our model outperforms previous methods by a large margin
including the current SOTA method VSAIT.

4.3 Artistic Style Transfer [Normal-Fidelity]

Dataset: Following previous artistic style transfer work, we
use MS-COCO [48] as source domain and Wiki-Art [3] as
target domain in our experiments. By default, all images are
resized to 300× 400 for training and testing.

Qualitative Evaluation: We compare the visual perfor-
mance with different methods. WCT [13] generates stylized
images with severe content distortion. AdaIN [12] preserves
content information to a certain extent while detailed tex-
tures are lost. Artflow [23] uses a flow-based network to

TABLE 4
Quantitative results of low-light enhancement. NIQE [51] score is used

as the metric, where the smaller value indicates better perceptual
performance. Our method consistently yields better results.

Method MEF↓ LIME↓ NPE↓ DICM↓ All↓

Source Image 4.265 4.438 4.319 4.255 4.134
RetinexNet [2] 4.149 4.420 4.485 4.200 3.920
CycleGAN [1] 3.782 3.276 4.036 3.560 3.554

LLNet [16] 4.845 4.940 4.78 4.809 4.751
Jinag et al. [52] 3.232 3.719 4.113 3.570 3.385
ArtFlow [23] 3.621 3.579 3.052 3.578 3.381

Ours 3.511 3.418 3.460 2.916 3.306

prevent content distortion, while checkerboard artifacts ex-
ist due to the squeeze operation. CCPL [36] utilizes a novel
transformation in replacement of AdaIN [12] and achieves
good stylistic results. As shown in Figure 7, our results not
only have great stylistic effects but also achieve the best
retention of content information.

Quantitative Evaluation: Following [49], we evaluate the
stylized images quantitatively using SSIM and KID, where
SSIM indicates the performance of content preservation,
KID measures the similarity between the transferred image
and the target image. As shown in Table 2, our model
achieves the best content preservation and the second-best
KID score with over 5 times smaller parameters and FLOPs.

User Study: To give an additional quantitative evalua-
tion, we conduct a user study from 119 volunteers. We
randomly choose 42 content images and 26 style images
from the test set to generate 1092 content-style pairs for
each method. Each participant is randomly allocated 10-15
pairs and chooses the best method in Detail (preservation
of texture and semantic information) and in Overall (overall
performance, i.e., quality, stylization, fidelity) for each pair.
We finally collect 1673 effective votes, and Table 3 shows
the human performance rate, where our model outperforms
previous methods by a large margin.

4.4 Low-level Vision [Strong-Fidelity]

We evaluated our model with two different low-level vision
tasks: (1) Low-light Enhancement (2) Dehazing.

Dataset: We conduct the low-light enhancement experiment
following the official LOL dataset [2]’s train/val/test split.
Dehazing experiment is trained on RESIDE-ITS [50] and
evaluated on Synthetic Objective Testing Set (SOTS) [50].
By default, all images are resized to 512 × 512 for training
and testing.
Low-light Enhancement: We performed a quantitative com-
parison of our model and other methods on the LOL testset
[2] with metric NIQE [51]. As shown in Table 4, our model
achieved the best NIQE score on natural images compared
to previous methods. More visual results are shown in Fig. 8.
Dehazing: We compare our model with previous methods
in Table 5 with metrics PSNR and SSIM, our model achieved
second-best PSNR and SSIM score. Fig. 9 illustrates qualita-
tive results of our method.
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Source Target Ours AdaIN ArtFlow WCT CCPL

Fig. 7. Style transfer results compared with the state-of-the-art style transfer methods. Compared to other methods, our model generates images
with satisfying artistic style without losing content information.

TABLE 5
Quantitative results of Dehaze. Our model achieves competitive results on both PSNR and SSIM metrics.

Method DehazeNet [53] GMAN [54] GFN [55] MAXIM [31] GCANet [56] ArtFlow [23] Ours

PSNR↑ 22.45 28.07 21.55 34.09 19.98 28.02 28.25
SSIM↑ 0.851 0.934 0.843 0.984 0.704 0.935 0.945

O
ut
pu
t

So
ur
ce

Fig. 8. Visual results of low-light enhancement on the LOL dataset [2].
Our generated images effectively retain content information and notably
enhance dark areas compared to the source images.

4.5 Ablation Study

Runtime Analysis. On a single NVIDIA 32G V100 GPU,
our method could process 86.46 samples per second in the
GTA2Cityscapes task and 4.30 samples per second in the
style-transfer task, which outperforms most SOTA methods
in both tasks (see Table 6).
Architecture Analysis. To demonstrate the effectiveness
of our network design, we conduct an ablation study
on network architecture between our HF and ArtFlow
[23], by adding the key components of ArtFlow except
for the squeeze operation to our model. Table 8 shows
the quantitative comparison of the artistic style transfer

task. Compared to ArtFlow, our model achieves better
performance with simpler network architecture, which
shows the significance of Hierarchy Flow for I2I translation
tasks.

Effect of k in aligned-style loss. Table 7 shows the effect
of k in the aligned-style loss for the artistic style transfer
task. As designed, larger k trades content preservation for
stylization in translated images. The model trained with
k = 0.7 retain the richest semantic details with the best
SSIM score. Aligned-style loss with k = 1.0 is equivalent
to the vanilla style loss and highly distorts semantic
information and becomes over-stylized.

Effect of Model Size. We conduct ablation study of
model size in Dehazing task. As shown in Table 7, base
model HF with only 0.68M parameters already achieves
competitive performance. As the model size expands (HF+:
0.74M; HF++: 1.01M; HF†: 6.30M), performance improves
consistently.

Effect of Image Resolution. Due to the simplicity of
network design, our model is capable to support high-
dimensional image training and inference. We conduct
an ablation study of different input/output resolutions
with model HF and k = 0.8 for GTA to Cityscapes tasks.
As results shown in Table 8, compared to the baseline in
512 × 256, mIoU obtains a performance boost by +2.90
and +4.28 with resolution of 1024 × 512 and 2048 × 1024
respectively.
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OutputGround TruthSource

Fig. 9. Visual results of Dehaze. Our method shows outstanding de-
hazing performance in various scenarios, with output image quality
comparable to the ground-truth images.

TABLE 6
Runtime analysis. Comparison on throughput (N samples per second)
for different methods in GTA to Cityscapes (top rows) and artistic style

transfer (bottom rows) respectively.

CycleGAN GcGAN DRIT++ CUT VSAIT Ours

15.76 33.15 21.06 32.39 32.39 86.46

CCPL ArtFlow* ArtFlow† AdaIN WCT Ours

4.28 2.44 3.45 14.66 1.34 4.30

TABLE 7
Ablation study. 1. Ablation study of k in our proposed aligned-style loss

on artistic style transfer task. Different k performs trade-off between
content preservation and stylization, indicated by SSIM and FID

respectively. 2. Model performance vs. Model size on Dehazing task,
large model boosts performance consistently.

k FID↓ SSIM↑ Model PSRN↑ SSIM↑ Params↓

0.7 0.91 0.60 HF 26.76 0.931 0.68M
0.8 0.82 0.56 HF+ 27.18 0.936 0.74M
0.9 0.50 0.39 HF++ 27.45 0.937 1.01M
1.0 0.95 0.17 HF† 28.25 0.945 6.30M

5 CONCLUSION

In this paper, we categorize image-to-image translation
problems into three levels: strong-, normal-, and weak-

TABLE 8
Ablation study of network architecture between HF and ArtFlow for
artistic style transfer task. Overall, Hierarchy Flow achieves the best

results.

Architecture FID↓ SSIM↑ KID(×103)↓

Hierachy Flow 0.61 0.55 25.0/5.1
+ Actnorm 0.88 0.29 27.3/4.9
+ 1x1 Conv 0.97 0.24 25.3/4.2

ArtFlow 0.85 0.21 27.2/4.5

TABLE 9
GTA to Cityscapes with different image resolutions. Due to the simple
design of network, HF supports HD image training and testing, which

yields better performance.

resolution pxAcc↑ clsAcc↑ mIoU↑

512x256 81.04 41.92 31.52
1024x512 84.95 45.25 34.42
2048x1024 87.21 46.74 35.80

fidelity translation. We proposed a novel invertible net-
work Hierarchy Flow, with a dedicated aligned-style loss
for high-fidelity image-to-image translation. Qualitative and
quantitative results show that our model obtains better
content preservation during translation, and achieves the
best performance in high-fidelity translation tasks.
Future work. Although our model outperforms previous
methods in strongly and normally constrained tasks, we
failed to achieve admirable results in all weakly con-
strained translation tasks. Future work includes extending
this model to full spectrum of image-to-image translation
tasks.
Broader Impact. Our proposed generative model could
eliminate the gap between simulation and reality, which can
be widely used in self-driving and medical areas. The use
of image synthesis would not lead to privacy issues but
might create fake news, thus more regulations are needed
to restrict the usage of synthesized data.
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[32] D. Engin, A. Genç, and H. Kemal Ekenel, “Cycle-dehaze: En-
hanced cyclegan for single image dehazing,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2018, pp. 825–833.

[33] Z. Anvari and V. Athitsos, “Dehaze-glcgan: unpaired sin-
gle image de-hazing via adversarial training,” arXiv preprint
arXiv:2008.06632, 2020.

[34] J. Theiss, J. Leverett, D. Kim, and A. Prakash, “Unpaired image
translation via vector symbolic architectures,” in European Confer-
ence on Computer Vision. Springer, 2022, pp. 17–32.

[35] T. Q. Chen and M. Schmidt, “Fast patch-based style transfer of
arbitrary style,” arXiv preprint arXiv:1612.04337, 2016.

[36] Z. Wu, Z. Zhu, J. Du, and X. Bai, “Ccpl: Contrastive coherence
preserving loss for versatile style transfer,” in European Conference
on Computer Vision. Springer, 2022, pp. 189–206.

[37] X. Li, K. Kou, and B. Zhao, “Weather gan: Multi-domain weather
translation using generative adversarial networks,” arXiv preprint
arXiv:2103.05422, 2021.

[38] J. Lin, Y. Xia, T. Qin, Z. Chen, and T.-Y. Liu, “Conditional image-to-
image translation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 5524–5532.

[39] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal
unsupervised image-to-image translation,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 172–189.

[40] T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, “Contrastive learning
for unpaired image-to-image translation,” in European Conference
on Computer Vision. Springer, 2020, pp. 319–345.

[41] I. Kobyzev, S. Prince, and M. Brubaker, “Normalizing flows: An
introduction and review of current methods,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2020.

[42] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent
components estimation,” arXiv preprint arXiv:1410.8516, 2014.

[43] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel, “Flow++:
Improving flow-based generative models with variational de-
quantization and architecture design,” in International Conference
on Machine Learning. PMLR, 2019, pp. 2722–2730.

[44] H.-J. Chen, K.-M. Hui, S.-Y. Wang, L.-W. Tsao, H.-H. Shuai, and W.-
H. Cheng, “Beautyglow: On-demand makeup transfer framework
with reversible generative network,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 042–10 050.

[45] H. Fu, M. Gong, C. Wang, K. Batmanghelich, K. Zhang, and
D. Tao, “Geometry-consistent generative adversarial networks for
one-sided unsupervised domain mapping,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 2427–2436.

[46] H.-Y. Lee, H.-Y. Tseng, Q. Mao, J.-B. Huang, Y.-D. Lu, M. Singh,
and M.-H. Yang, “Drit++: Diverse image-to-image translation via
disentangled representations,” International Journal of Computer
Vision, vol. 128, no. 10, pp. 2402–2417, 2020.

[47] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethink-
ing atrous convolution for semantic image segmentation,” arXiv
preprint arXiv:1706.05587, 2017.

[48] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740–755.

[49] K. Hong, S. Jeon, H. Yang, J. Fu, and H. Byun, “Domain-aware uni-
versal style transfer,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2021, pp. 14 609–
14 617.

[50] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang,
“Benchmarking single-image dehazing and beyond,” IEEE Trans-
actions on Image Processing, vol. 28, no. 1, pp. 492–505, 2018.

[51] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “com-
pletely blind” image quality analyzer,” IEEE Signal processing
letters, vol. 20, no. 3, pp. 209–212, 2012.

[52] Y. Jiang, X. Gong, D. Liu, Y. Cheng, C. Fang, X. Shen, J. Yang,
P. Zhou, and Z. Wang, “Enlightengan: Deep light enhancement



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

without paired supervision,” IEEE Transactions on Image Processing,
vol. 30, pp. 2340–2349, 2021.

[53] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao, “Dehazenet: An end-to-
end system for single image haze removal,” IEEE Transactions on
Image Processing, vol. 25, no. 11, pp. 5187–5198, 2016.

[54] Z. Liu, B. Xiao, M. Alrabeiah, K. Wang, and J. Chen, “Single image
dehazing with a generic model-agnostic convolutional neural net-
work,” IEEE Signal Processing Letters, vol. 26, no. 6, pp. 833–837,
2019.

[55] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M.-H. Yang,
“Gated fusion network for single image dehazing,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 3253–3261.

[56] D. Chen, M. He, Q. Fan, J. Liao, L. Zhang, D. Hou, L. Yuan, and
G. Hua, “Gated context aggregation network for image dehazing
and deraining,” in 2019 IEEE winter conference on applications of
computer vision (WACV). IEEE, 2019, pp. 1375–1383.

Weichen Fan received his B.S. degree in elec-
tronic science and engineering (ESE) from the
University of Electronic Science and Technol-
ogy of China (UESTC) and his master’s degree
from the Department of Electronic and Computer
Engineering (ECE), National University of Sin-
gapore (NUS). His is currently a researcher at
SenseTime. His research interests include low-
level vision, transfer learning, and multi-modal
learning.

Jinghuan Chen received his B.Eng. degree
from Nanyang Technological University, Singa-
pore in 2020. He is currently an Algorithm En-
gineer at ByteDance Inc. His research interests
include computer vision, generative models and
multi-modal learning.

Ziwei Liu is currently a Nanyang Assistant Pro-
fessor at Nanyang Technological University, Sin-
gapore. His research revolves around computer
vision, machine learning and computer graphics.
He has published extensively on top-tier con-
ferences and journals in relevant fields, includ-
ing CVPR, ICCV, ECCV, NeurIPS, ICLR, ICML,
TPAMI, TOG and Nature - Machine Intelligence.
He is the recipient of Microsoft Young Fellow-
ship, Hong Kong PhD Fellowship, ICCV Young
Researcher Award, HKSTP Best Paper Award

and WAIC Yunfan Award. He serves as an Area Chair of CVPR, ICCV,
NeurIPS and ICLR, as well as an Associate Editor of IJCV.


